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Parametrically excited standing edge waves 

By JOHN MILES 
Institute of Geophysics and Planetary Physics, University of California, San Diego, 

La Jolla, CA 92093, USA 

(Received 8 March 1989 and in revised form 5 September 1989) 

The resonant excitation of weakly nonlinear, standing edge waves of frequency o and 
longshore wavenumber k by a normally incident, non-breaking gravity wave of 
frequency 2w and shoreline amplitude a on a bottom that descends smoothly from a 
shoreline depth of zero and slope u to an offshore depth h, is calculated for ka Q 
u Q kh, Q 1. The analysis generalizes hose of Guza & Bowen (1976) and Rockliff 
(1978), which assume uniform slope and perfect reflection, and culminates in a pair 
of evolution equations for the slowly varying, quadrature amplitudes (or, 
equivalently, amplitude and phase) of the edge wave. Weak, linear damping (which 
implies imperfect reflection) is incorporated, and the resulting fixed points and 
bifurcation points of the evolution equations are determined. It is shown that the 
solution for prescribed initial conditions must tend to one of the stable fixed points, 
which correspond to an edge-wave amplitude of either zero or O((ua/k) f ) ,  depending 
on whether the damping exceeds or is inferior to a certain critical value. The 
restriction u Q kh, is relaxed for the special depth profile h/h, = 1 - exp ( - ux/h,), 
for which the inviscid, shallow-water equations admit exact solutions. These 
solutions serve to validate the asymptotic (a/kh 4 0) approximations for arbitrary 
depth profiles. 

1. Introduction 
I consider here the subharmonic excitation of a standing edge wave of longshore 

wavenumber k and natural frequency wo by a normally incident gravity wave of 
frequency 2 0  and shoreline amplitude a on a gently sloping bottom with the smooth 

fix (ax Q h,) (0 < < 
depth profile 

h = h, h(m/h,)  - 
h, (ux 9 h,) 

( 1.2 a+) 

(1.3a, b )  

The dimensionless parameters E ,  p, kh,, h and /3 are measures of nonlinearity, beach 
curvature (i.e. the decay of the slope from u to 0) ,  shallowness, frequency (squared) 
and proximity to resonance. The natural scale for h in the neighbourhood of the shore 
is u / k ,  whence it is expedient to supplement (1.1) with 

(1.4) R = u-lkh = p-’X(pkx). 

The problem posed in the preceding paragraph has been analysed for perfect 
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reflection (of the incident wave) from a uniformly sloping beach ( h  = ax)  by Guza & 
Bowen (1976) and Rockliff (1978) using the shallow-water equations and by Minzoni 
& Whitham (1977) using the full equations of fluid motion with CT = tan ( x / u v )  for 
integer N .  (The shallow-water approximation is manifestly inconsistent with h = 
ux t co as x t co, but Minzoni & Whitham find that i t  yields the correct results in the 
neighbourhood of the shore if u 4 1.) I revisit this problem (i) to accommodate an 
arbitrary depth profile for 0 < p 4 1, (ii) to obtain the solution for Ball’s (1967) 
exponential profile for arbitrary p > 0, (iii) to determine the effects of imperfect 
reflection, and (iv) to  determine the structure of the evolution equations and the 
stability of their solutions. 

I delay consideration of imperfect reflection until $7 and first posit the shoreline 
and offshore displacements of the basic (incident plus reflected) standing wave in the 
forms Cs = usin2wt (5 = 0) 

and Is - u,cos[k,(x-Z)]sin2wt ( E , x ~  LO), k, = 2w(gh,)-i, (1.6u, b )  

where u,/u and k, 1 are determined by the solution of the inviscid reflection problem. 
Guided by analogy with the problem of standing cross-waves in a wave tank (Miles 

1988), I pose the edge-wave displacement a t  the shoreline in the form 

(1.7) 

where p and q are slowly varying amplitudes and T = swt is a slow time. In  the cross- 
wave problem, absent dissipation, p and q are canonical variables that satisfy 
Hamiltonian equations (cf. (1.9) below). I n  the present problem energy is lost 
through both friction and radiation (Guza & Bowen 1976), and the resulting 
evolution equations are of the form 

p = -[a +P+R(p2 +qz)]p- [p+ Q +Skz  +q2)]  q, ( 1 . 8 ~ )  

q = - [ a - P + R ( p 2  + $ ) I  q + 1p- Q + q p 2  + q”1 P ,  (1 .8b)  

in which - = d/dT, a is a measure of linear damping (see §7),  p is the tuning 
parameter (1.3b), P,  R and S are measures of parametric excitation, radiation 
damping and self-interaction of the edge wave (see §4), and Q is a measure of 
imperfect reflection (see $7).  I prove (in $4) that  the solution of (1.8) must tend (as 
7 1‘ 00) to a stable fixed point in the (p, q)-plane. If a > (Pz + Q Z ) i p  = q = 0 is the only 
fixed point and edge waves decay. If a < (Pz + Qz)i there are symmetry-breaking 
bifurcations at /3 = & (Pz + Qz - a2)4, and the fixed point a t  p = q = 0 loses stability 
to either of a pair of finite-amplitude fixed points that  represent standing edge waves. 

It is worth noting that the evolution equations (1.8) are of the quasi-canonical 

Q = s - t u b ( ~ )  cos wt + q(7) sin ot] cos ky[l+ 0(s91 (x = o) ,  

form 
(1.9u, b)  

where D and H are the dissipation and Hamiltonian functions 

D = ~ a ( p 2 + q 2 ) + ~ ~ ( p 2 + q z ) 2 ,  H = ~ ~ ( p 2 + q 2 ) + P p q + ~ Q ( q 2 - p 2 ) + ~ S ( p 2 + q 2 ) 2 .  
(1.10u, b )  

I proceed as follows. I n  $2)  I formulate the inviscid problem and posit an 
asymptotic expansion for the dimensionless velocity potential in powers of si, in 
which the dominant component, is an eigensolution ( A  = A,) of the linear edge- 
wave problem, the second-order components, s$, and sq!~~, represent the basic wave 
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and the second-order interaction of the edge wave, and the third-order component, 
E $ $ ~ ,  is driven by resonant detuning ( a  h-A, = 2 ~ p h )  and the slow (7)  variation of 
&, the quadratic interaction between and I$,, and the cubic self-interaction of 
~$5,. This leads to a sequence of partial differential equations of the form 9#, = 
9$1 = 0 and L?$, = f,(n = 2,3, ...), where 9 is a second-order operator, f2 is a 
functional of r,bl, and f3 is a functional of #,, $1 and &. 

The solutions of 9$, = 9$1 = 0 may be obtained through separation of variables. 
The functional f2, which is quadratic in $, and its derivatives (which are linear 
functionals of the slowly varying amplitudes p(7 )  and q(7))  is orthogonal to the 
eigensolutions (which are sinusoidal in ot and Icy) of the operator 9, by virtue of 
which 2’q52 = f2 admits a Fourier-transform solution for unrestricted p(7)  and q(7). I 
obtain a formal representation of this solution in $3. 

The functional f3, in contrast to f2, contains (for unrestricted p and q)  Fourier 
components that resonate with the eigensolutions of 94, and 9$a = f 3  is solvable if 
and only if p and q are chosen to render f3 orthogonal to these eigensolutions (the 
Fredholm alternative). I invoke these solvability conditions in $ 4  to obtain the 
evolution equations (1.8), in which the parameters P, R and S appear as functionals 
of the kx-dependent factors of $,, and Z(kx) and E(kx), respectively. I also 
incorporate the damping parameter a a t  this stage, but neglect &, which proves to 
be O(ae) (see $7).  

Further progress requires the determination of 2 and E for specific profiles. I 
consider an exponential profile, for which 2 and E are hypergeometric functions (Ball 
1967 ; Miles 1990b), in $5 and Appendices A and B. These solutions are valid for all 
p > 0, but they are of special interest for p < 1, in which domain their power-series 
developments provide a test of the asymptotic (p.10) results for other profiles. 

In $6, I develop the asymptotic solution for a profile of the form (1.1) and show 
that P, R and S are given within 1 + O(p) by the corresponding results for a uniformly 
sloping beach. I also obtain the O(p) corrections to P, R and 8 for finite curvature. 

The development in $$2-6 neglects viscous and capillary effects (except as they are 
anticipated in $4); I consider these effects in $7. The parameter a, which represents 
viscous dissipation of the edge wave, and the correction of w, for viscous dispersion 
may be obtained through a boundary-layer approximation (cf. Guza & Bowen 1976) 
despite the violation of the boundary-layer approximation near h = 0. The primary 
effect of viscosity on the basic wave is to render the reflection imperfect. The 
introduction of viscosity, absent capillarity, renders the singularity at h = 0 irregular 
(it is regular for the inviscid problem), and it is necessary to invoke capillarity to 
obtain a regular singularity. I have considered this viscous reflection problem 
elsewhere (Miles 1990b) and merely state the required results in $7. 

The present results appear to be adequate for the analytical treatment of the edge- 
wave problem (although it may be expedient to evaluate the damping parameter a, 
and perhaps also &, through direct measurement) on real or laboratory beaches in the 
absence of breaking; however, it must be emphasized that the conditions under 
which breaking is absent and standing edge waves are realized on real beaches are 
rather special. 

2. Perturbation expansion 
Invoking kh < 1 and assuming irrotational flow, we have the shallow-water 

equations, $ t + p $ ) ” + s S =  0, V.[(h+sS)V91+St = 0, (2.1 a ,  b )  
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for the velocity potential $ and the free-surface displacement 6. Eliminating 5, we 
obtain 

s V * ( h W ) - $ t ,  = ~ $ ~ ~ $ , + ~ ~ ~ ~ $ , + ~ ~ ~ $ ~ " ~ $ ~ .  (2.2) 

The boundary conditions are 

h$,+O ( x J O ) ,  $v = 0 (ky = Omodn), (2.3a, b) 

and (1.6) plus E radiation condition on the edge wave for x f  00. 

Starting from %he hypothesis that the amplitude of the edge wave relative to that 
of the standing wave is O ( E ~ )  near the shore, we posit the perturbation expansion 

$ = ag(bfV[&,  +€(do + $2) + &3 + 0(s2)1, (2.4) 

where: the QSn are dimensionless, O(1) functions of the dimensionless variables 

E z k x ,  y z  ky, B r w t ,  7 r s w . t ;  (2.5) 

$o is the dimensionless counterpart of the standing wave $s ; $1 is the counterpart 
of $e and an eigensolution of the linear edge-wave problem for A = A,; $2 is driven 
by the quadratic self-interaction of $l; $3 is driven by the resonant detuning 
(cc h- A, = 2$A) and the slow (7 )  variation of the quadratic interaction between 
$, and and the cubic self-ipteraction of $l. Substituting (2.4) and (2.5) into (2.2), 
invoking (1,2)-(1,4), and revormalizing V = (aE, a,,), we obtain 

v * (AV4,) - = 2$h0 = 0, 

Y(b1 = 0 ( A  = A,), 

( 2 . 6 ~ )  

(2.6b) 

Y$P = 2VA-VAff + $18 V"1, ( 2 . 6 ~ )  

+2(VqlleV$n)B+$lsV2$2 +$2sV2$, +iA-'V. (V$1)3. ( 2 . 6 4  

We note that, here and subsequently, A-ho may be neglected except in the tuning 
parameter p, and we attach the subscript to  A, only where necessary to identify it as 
an eigenvalue. 

The boundary conditions implied by (1.5)-( 1.7), (2.3) and the edge-wave radiation 
condition are 

= 2W,57+P41ss) +2PgIO.V$l)B+ 4oeV2$1 +$lSV2$O 

$o -+ cos 28, + { - p  sin 8 + q cos 0 )  cos 7, A& -+ o (6 4 o) ,  (2.7 u-c) 

4, - f i c o ~ ( k ~ , z ) c o s w  $]+o, +2E+ik42ff-+0 (gtm), (2.ga+) 

where A a,/a, A k,/k = 2(A,u)i. (2.9a, b) 

The boundary conditions (2.7a, b) incorporate the regularity implicit in ( 2 . 3 ~ )  and 
the normalizations implicit in (1.5) and (1.7). 

3. Separation of variables 
We pose the solutions of (2.6a, b), (2.7a, b )  and (2.8a, b) in the forms 

$o = +Zg, A )  cos 28, $1 = ( - p  sin 8+ q cos 8) E ( t )  cos 7, (3.1 a ,  b) 
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and Q) are determined by 

(AZ')'+4AZ = 0, (AE')'+(A,-A)E = 0,  (3.2a, b)  

Z=1,  E = l  ( ( = 0 ) ,  (3.3a, b) 

(( t a), (3.4a, b )  

and, here and subsequently, ' = d/d( except as noted. We display A in 2 = 2(<, A)  in 
anticipation of its role as a spectral variable. 

Substituting (3.1 b)  into (2.6c), we obtain 

where Z and E (which give the offshore variations of 

2 N A cos (dc - k, I ) ,  E -+ 0 

2+2 = ( p 2  + q 2 )  ( ~ ( 6 )  + F,(() cos 2711 sin 24, (3.5) 

and 0 = 0 -  tan-' ( q / p ) .  (3.7) 

Posing (3.8) 

where P t(E2+2E'2+EE"), F, G P - E 2 ,  (3.6a, b)  

+, = (p2 + q 2 )  Re {i[@(() + a2(fl) cos 271 e-*'l}, 

where Re implies the real part of, in ( 3 4 ,  we obtain 

(A@')'+4A@ = F ,  (A@;)'+4(A-A)@, = F,. (3.9a, b) 

The boundary conditions ( 2 . 7 ~ )  and ( 2 . 8 ~ )  imply 

A@'+O ( E J O ) ,  @'-ik@+O ((t a), (3.10a, b )  

Invoking A = 0 and A' = 1 at ( = 0 in (3.2) and (3.9), we obtain the auxiliary 
for both @ and @, (which may either radiate or decay exponentially as ( t  a). 

conditions 
Z'+4AZ=0, E + A o E = O ,  @'+4A@=F, @;+4A@,=F2 ( ( = 0 ) .  

(3.11 a d )  

The spectrum of ( 3 . 9 ~ )  is continuous over 0 < A < co, and the required solution 
may be constructed using Sturm-Liouville theory with the re-normalized solution 

&((,A) = (27c)-~(p/A)+A-'z((, A)  (3.12) 

of ( 3 . 2 ~ )  as the basis for a Fourier-integral representation (cf. Morse &, Feshbach 
1953). The end result is (cf. Minzoni & Whitham 1977) 

where 

(3.13 a )  

(3.13b) 

(3.14) 

is the Fourier transform of F, the integral in ( 3 . 1 3 ~ )  is indented under the pole a t  
K = A in order to satisfy the radiation condition (3.10b), and the crossed integral sign 
in (3.13b) implies a Cauchy principal value. We note that 

Smp6d( = 92(K)dK-i7c92(A). A - K  
0 

(3.15) 

The spectrum of (3.9b) comprises both discrete and continuous components, 
corresponding, respectively, to the N +  1 discrete eigenvalues 0 < A,, < . . . < A,, and 
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A > 4, = l/p. We examine the complete spectrum and obtain explicit results for the 
special case of an exponential depth profile in Appendix A. These results suggest (but 
I have not proved) that, for any smooth profile, N = 0 for y 6 yl,yl >, 1, that the 
contribution of the continuous spectrum to Q2 is exponentially (in l/p) small as 
p 4 0, and that the single-mode truncation 

(3.16) 

where A,, and Q2, are the dominant eigenvalue and eigensolution of (3.9b), provides 
a good approximation for y 5 1. Comparing (3.2b) and (3.9b), we infer that A,, and 
@,,, may be determined from A, and E through a scale transformation (w-+20, 
k + 2k). 

4. Evolution equations 
The evolution equations for p and q are determined by the solvability conditions 

that in (2.6d) be orthogonal to the linearly independent eigenfunctions 
E(~)cosqcosO and E(k)cosqsinO of (2.66). Substituting (3.1) and (3.8) into (2.6d), 
invoking these orthogonality conditions (the procedure is lengthy but standard and 
includes the reduction of the various integrals through Green's theorem and the 
invocation of (3.3), ( 3 . 1 0 ~ )  and (3.11) a t  t; = 0 ) ,  solving for p = dp/d.r and q,  and 
incorporating boundary-layer damping but neglecting Q = O(ac) (see §7) ,  we obtain 
(cf. (1.8)) 

P = - [a+P+R(p2 + !?"I P- [P+S(P2 +q2)1 q, (4.1a) 

= - [ ~ t - - P + R @ ~ + q ~ ) ] q + [ P + S @ ~ + q ~ ) ] p ,  (4.1 b )  

or, equivalently, after introducing r = p + iq and r* = p - iq, 

i = (-a+iP) r-Pr* + (--R+ is) r2r*, (4.2) 

where P = (A[E2])-'[PZ] (4.3u) 

and 
3 

32A 
S+iR = (2A[E2])-' - 4 [ F @ + ' ~ 2 @ 2 ] + - [ 3 E 4 + 2 E 2 E 2 + 3 E 4 ] +  

(4.3b) 

wherein 

It follows from (3.15) and (4.3b) that  R > 0. 
We now assume that S < 0;  the following results may be continued into S > 0 by 

changing the signs of /3 and q. The fixed points of (4.1), a t  which p = q = 0, are given 

bY p = q = o ,  (4.4u) 

p2+q2 = r; (0 c a < P, -PI c < PI), (4.4b) 

p2+q2 = r:, (0 < a < a*, P1 < P < P*), (4.4c) 

where 

a, = (R2+S2)-$S( P, P* = R-'[P(R2+S2)i-ISI a] ,  P1 = (P2-a2)i ,  (4.5a-c) 

- Ra + IS1 P & [P2(R2 + S2) - (RP + IS1 
> (4.6) R2 +S2 

r: = 



Parametrically excited standing edge waves 49 

and (4.7) 

(there are two fixed points for each of p 2  +q2 = r t  and r?). The origin is the only fixed 
point, and edge waves are not excited, if a > P. There are symmetry-breaking 
(pitchfork) bifurcations at  p = &B1 (see below), and (4.4b) is admissible, if and only 
if a < P .  There is a turning-point (saddle-node) bifurcation at  /3 = P, > P,, and ( 4 . 4 ~ )  
is admissible, if and only if a < a*. 

The stability of a particular fixed point, say (pO,qe) ,  may be determined by 
substituting 

into (4.1), neglecting terms of second or higher order in ( p l , q l ) ,  and requiring the 
determinant, A(h),  of the resulting linear equations in (pl, ql)  to vanish. The result for 
p o  = qo = 0 is 

A(h) = h2+2ah+a2+/32-P2 = 0, (4.9) 

from which it follows that: p = q = 0 is stable/unstable for p2 Pt. The 
corresponding analyses for the fixed points (4.4b, c) reveal that p 2 + q 2  = r: is stable 
forb2 < & if a, < a < P or for -pl < /3 < P, if 0 < a < a,, and that p2+q2 = r l  is 
unstable for p, < P < P ,  if 0 < a  < a,. The stable/unstable fixed points are 
sinks/saddle points. 

A more detailed analysis of the bifurcation points at  p = &/?, is expedited by the 
canqnical transformation 

El=[; :I!], (4.10) 

where 

Transforming (1.9) with Q = 0 in ( l . l O b ) ,  we obtain 

(4.12 a )  

(4.12 b)  

It follows from the linear components of (4.12) that, in the neighbourhood of $i = 
c j  = 0, 4 grows like exp [(a,  -a)  71, whereas I; decays like exp [ - (a,  + a )  71. A centre- 
manifold projection (Guckenheimer & Holmes 1983, 53.2) of (4.12) yields 

a,4 = c14-c,43+0~45), (4.13) 

where P: -P2 C,  = a,-a = ~ 

a+a, 
(4.14 a )  

(4.14b) 

It follows from (4.13) and (4.14) that there are pitchfork bifurcations at p = &@,, 
that p=-pl is supercritical (since C, > 0 at P =  -/3,), and that /?=PI is 
super/subcritical for a 2 a,. 

The preceding results assume perfect reflection, for which Q = 0. Allowing for 
imperfect reflection (see §7) ,  we find that:  -Qq, -Qp and -iQr* are added to the 
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FIGURE 1 .  Resonance curves calculated from (4.6) for the limiting values (p 4 0) P = 0.135, 
R = 0.0575 and S = -0.0471. 

P 

right-hand sides of (4.la),  ( 4 . l b )  and (4.2), respectively; P is replaced by (Pz+Qz);  
in (4.4)-(4.6); Q is added to the numerator on the right-hand side of (4.7). This 
implies an increase in both the range of damping for which, and the bandwidth in 
which, edge waves may be excited. 

The Poincard-Bendixson theorem implies that any solution of (4.1) must tend 
asymptotically to either a fixed point or a limit cycle. The logarithmic contraction 
rate for the area within a closed orbit in the (p ,  q)-plane is given by 

(4.15) 

in consequence of which limit cycles are impossible and every solution of (4.1) must 
tend to one of the stable fixed points. 

The resonance curves (dimensionless energy, p 2  + q2, vs. frequency offset, /I), which 
have maxima at  /3 = IS) (P-a)/R and r: = (P-a)/R, are plotted for the asymptotic 
( ~ 4 0 )  values of P, R and S (see $ 5 )  in figure 1 (cf. Guza & Bowen 1976, figure 4;  
Rockliff 1978, figure 1) .  The damping coefficient for laminar damping, as calculated 
from (7.4) below with tan-' CT = 5.1°, k = 2~ /1 .62  m, a = 1.15 cm (data cited by Guza 
& Bowen for ei = 1 in their notation), Y = cm2/s and C = 2, is a = 0.090, which 
gives a / P  = 0.67 (cf. a,/P = 0.63). 

5. Exponential profile 
The shallow-water equations admit exact solutions for 

h = p& = l-ee-'E. 
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Substituting (5.1) into ( 3 . 2 ~ )  and adopting exp (-,&) as the independent variable, 
we obtain (Miles 1990b) 

Z([ ,h)  = Re&F1(l-iv, -iv; 1; l-e-pt)eip”t), ( 5 .2~)  

(5.2b) = Re {d( u ) ~  Fl( 1 - iu ,  - iu ; 1 - 2iu ; e-pt) eip”c), 

where 
2r(2iv) 

T(iv)T(l+iv)’ 
(5.3a, b) 

and ,F1 is Gauss’s hypergeometric function. Letting Et 00 in (5.2b) and invoking 
(3.4a), we obtain 

(5.4a, b) 

(5.5) 

Substituting ( 5 . 4 ~ )  into (3.12), we obtain 

g(6, A )  = Z ( 6 ,  A )  (cothnu);. 

The eigensolutions of (3.2b) are given by (Ball 1967) 

E = E,(E,p) = ,Fl(-n,2,u~1Ao-n+i; 1; l-e-k)e-(Ao-np)t, ( 5 . 6 ~ )  

h,=h,(,u) = (2n+1)(1+&2)~-(n2+n+$),u ( n = O , l ,  ...,N), (5.6b) 

where the En are hypergeometric (but not Jacobi) polynomials, and N is the integral 
part of Ao/p. The dominant mode corresponds to n = 0, for which 

E, = e-AoC, A, = (1 + & z ) t - + .  (5.7a, b) 

The solutions of (3.9b) are determined in Appendix A. The dominant mode, which 
is the only member of the discrete spectrum if ,u < 4 2 ,  is given by 

@ = e-4&5, A 20 - - ‘(1 2 +*&2),t-+p,. 
20 

Substituting (5 .7~)  into (3.6u, b) and invoking A z A,, we obtain 

F = 33A2 + 1) e-2A5, F, = z ( A 2  - 1 )  epzA$. 

Combining (5.2u), (5 .7~)  and (5 .9~)  in (4.3a), we obtain 

P(A) = $(3A2+ 1) 

Fl(l -iu, - i u ;  1 ; z )  dz 

(5.8a, b) 

(5.9a, b) 

(5.10~) 

(5.10b) 

(5.10~) 

which is plotted in figure 2. Combining ( 5 4 ,  (5.7u), (5.8a), (5.9u, b) and the 
approximation (3.16) in (4.3b), we obtain 

R = 4 n 9  ‘ ( A )  = n:P2 coth nu, (5.11) 
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FIQURE 2. The parameters P/Po (-) and R/R, (---) for the exponential profile (5.1), 
as calculated from (5.10) and (5.11). Po = e-r and R, = ~ e - ~ .  
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5 
s s, 
s,' so 
_ _  
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1 

0 

/ , 

0.2 0.4 0.6 0.8 1 .o 1.2 1.4 
P 

FIQURE 3. The parameters S/S,  (-) and SJS, (---) for the exponential profile, as calculated 
from (5.12) (in which S, is the last term). So = -0.0471. 
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where [coth ( K V , ) ] ~ ,  v, = 2 

The integral in (5.12) is analytically intractable but has been evaluated numerically 
to obtain the results plotted in figure 3. Note that S, (the last term in (5.12)) is 
negligible as p 4 0 but dominates S for p 2 0.7. 

The asymptotic development of the preceding results as p 4 0 yields (Appendix B) 

P = e-'(1-&u+&p2), R = ~e-~(l-&++$j&~),  (5.14a, b) 

(5 .14~)  

wherein O(p3) errors are implicit and S = e-4Ei(4). The errors in ( 5 . 1 4 ~ )  and (5.14b) 
are less than 2 and 4 % ,  respectively, for p < 1. The error in (5 .14~)  is less than 5 %  
for p < 0.7. 

S = - s - S - ( " - 5 6 ) ~ p + ( ~ - 3 1 3 6 ) ~ p 2  16 16 = -0.04705(1+ 1.38O6p+1.2225p2), 

6. Asymptotic (p 4 0) approximations 
Posing the solution of ( 3 . 2 ~ )  in the form 

(6.1 a, b) 

solving the resulting equation for f by expanding in powers of p, and invoking (3.3u), 
which implies f (0)  = 1, we obtain (Miles 1990b) 

f ( x )  = J,[(~A-~)~X]+O(,U~),  T = ~ ( A " - w w + x - ~ ) ,  4 (6.2a, b) 

where J ,  is a Bessel function, r = O(p),  and the approximation is uniformly valid in 
0 < x < co as p J 0  with A = O(1). 

The inner approximation (which suffices for the present calculation) to the 
dominant eigensolution of (3.26), (3.3b) and (3.46) is given by (Miles 1989) 

Substituting ( 6 . 3 ~ )  into (3.6) and invoking A, z A ,  we obtain the inner approxi- 
mations (cf. (5.9)) 

(6.4a, b) 

It follows from (6.3b) and (6.4b) that F,, and hence also Qi,, is O(p),  and hence that 
[F,Q,,] = O(p2) in (4.3b). 

The asymptotic solution described by (6.1) and (6.2) requires h = O( 1) as p 4 0 and 
therefore is unsuitable for the determination of Q, from (3.13), which requires #(g, K )  

near K = 0. Accordingly, we attack ( 3 . 9 ~ )  by posing (cf. (6.1)) 

Qi = A-f(&)%(x), F = A-f($x)iP(x), (6.5u, b) 

F = 33A2 + 1) e-2hE, Fz = g(A2 4 - 1 1 -  e 

where x is given by (6.lb), to obtain 

$"+x-l$l+ (4h-T) 6 = P .  



Combining (6.2a, b ) ,  (6.3a, b) ,  (6.4u), (6.8a, b)  and (6.9) in (4.3), neglecting 

A = [+!jy%, x = 2$-b@, r = ~, (6.10a-c) 

where y is defined by (6.3c), introducing s = (A-$r)ix as the variable of integration, 
and expanding in powers of y = O(p),  we obtain 

[F, Qb2] = O(p2),  invoking the inner approximations 

(6.11u, b)  

and S = &+&y-27c e-~S2Jo(2s)p(s)ds e-it*&(2t)p(t)dt, (6 .11~)  

where 
14 + S’ - s4 

P ( 4  = S [ l + Y (  48 )]+O(p2). 

Evaluating P with the aid of Weber’s integral 

I,, &(at) exp ( - bt2) t dt = $b-’ exp ( - &2b-1) 

(6.12) 

(6.13) 

(and its derivatives with respect to b )  and the integral in (6.11 c) numerically, we 
obtain 

P = e-2(1+&y), R = 7ce-*(l+b), S = -0.04705+0.06496y, (6.14u-c) 

wherein O(y2) errors are implicit. The results for y = 0 agree with Minzoni & 
Whitham (1977) and Rockliff (1978) ; Guza & Bowen (1976) obtain S = -0.055. The 
O(y)  terms agree with those in (5.14), for which y = -p. (This agreement provides 
a mutual check on the relatively complicated, essentially independent calculations 
of [Fdj].) We remark that (6.14) are independent of kh,, which suggests that (for 
IyI 4 1) they are not subject to  the shallow-water restriction kh, Q 1 (cf. Minzoni 
& Whitham (1977), who demonstrate this independence for y = 0 and u 4 1) .  

7. Viscosity and capillarity 
Viscosity requires the replacement of (3 . la ,  b )  by 

4, = fRe{Z([)e-2ie}, = Re{(p+iq)E(LJe-i(e+b)cosq}, (7.la,  b )  

in which Z and E now are complex amplitudes. (Viscous modifications of #z are 
negligible in the present approximation ; in particular, the inviscid approximation to 
2 may be used in (3.12)-(3.14).) If capillarity is neglected 2 and E satisfy second-order 
differential equations that have irregular singular points a t  h = 0. Capillarity raises 
the order of these equations to four and renders the singularity a t  h = 0 regular (Miles 
1990 a) .  

If kl,, k6, 4 1,  where 1, is the capillary length (2.8 mm for clean water), 

6, = (v/2w)i (7.2) 
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is a viscous lengthscale, and v is the kinematic viscosity, the primary effect of 
viscosity on the edge wave is to render the resonant frequency complex. The end 
result for the Stokes edge wave is (Miles 1990a) 

(7.3) wo = (agk)$l+ k~, - ~ ( 1  + i) a-lks,l= w, + iw,, 

where C = 1 for a clean free surface or C = 2 for a fully contaminated surface. The 
corresponding approximation to the linear damping parameter in (1.9a) and (4.1) is 

(7.4) 

wherein 6-l (e = ka/u) allows for the scaling of the slow time (7 E ewr t ) ,  and an error 
factor of 1 + O(kZ,, ks,, p )  is implicit. We remark that (7.4) also may be obtained 
through a boundary-layer approximation (cf. Guza & Bowen 1976) despite the 
violation of the boundary-layer assumption 8, Q h near h = 0. 

The primary effect of viscosity on the basic wave represented by 2 is to render the 
reflection imperfect, in consequence of which (6.1) and ( 6 . 2 ~ )  with T = 0 (in first 
approximation) therein are replaced by the outer approximation (Miles 1990 b )  

a = ~ - l (  -wi/wr) = Cd,/a, 

8 )  ( Z X ) f ( X ) ,  x = (n-A,)-+dt> (7.5a, b )  

(7.6) 

and f(x) = J0(2x) -4W3-  W Y , ( ~ x )  + O h ) .  (7.7) 

J8 Z = ( A - A  -fL t 

where A, = A([,) = (1 + i) Ca-lks,, = (1 + i) ae 

We remark that a in (1.5) now is the amplitude a t  that station a t  which (21 = 1, 
rather than the amplitude at  x = 0 (at which the inner approximation to 2 vanishes). 
The present formulation may be renormalized by replacing the reference station 
x = 0 in (1.5) and (1.7) by x = z1 and dividing ( 7 . 6 ~ )  by ( A , - A , ) - ~ ( $ x ~ ) ~ ( ~ ( x ~ ) .  

Modifying the calculation described in the first paragraph of $4 to allow for the 
complexity of E and 2, we find that - Qq, - Qp and - iQr* are added to the right- 
hand sides of (4.la), (4.lb) and (4.2), respectively, while ( 4 . 3 ~ )  is replaced by 

P+iQ = (h[lE12])-1[PZ], (7.8) 

where F' is the complex conjugate of F ,  as defined by ( 3 . 6 ~ )  for complex E. 
Proceeding as in $6, neglecting A, relative to A in (7.5), and approximating E by (6.3) 
(on the assumption that the contribution to Q of the imaginary part of E is 
dominated by that of Z ) ,  we obtain (cf. (6.11~)) 

P + i Q  = e-C'[J,(2s)-4?c(A,-kZ,) &(2s)]sds = e-z[l-4Ei(2)(A,-kZ,)], (7.9) 

where Ei (2) = 4.954 is an exponential integral.? It follows from (7.6) and (7.9) that 
Q = O(as) and therefore is negligible in the limit €40;  however, it may not be 
numerically negligible for moderately small a ~ .  
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Appendix A. Determination of @, for exponential profile 

(cf. (5.6)) 
The discrete eigenfunctions of (3.9b) for the exponential profile (5.1) are given by 

Qi,, = 2Fl( -n,  2Jv-n+ 1 ; 1 ; 1 -e-g) e++-,)PE, 

and A,, = (n+4)[1+(34)2]f-3n2+n+&)p (n = O,l, *..,N), (A Ib )  

Jv = (t + 4p-yt - + = 4p-lA20, 

(A l a )  

where (A 1 4  

and N is the integral part of JV; N = 0 for p < 4 2 .  We remark that A,, < A, and 
A,, > A, (n 2 1) in the admissible range ofp ;  accordingly, internal resonance between 
the dominant mode and any of the secondary modes is impossible. 

The eigenfunction in the continuous spectrum, l/p < A < a, is given by (cf. (5.2)) 

Qizh(g)  = Re(,F,(l+Jv-iv, - N - i v ;  1; 1-e-pE)e’p”t) (A 2a) 

(A 2b) = Re {d( v) Fl( 1 + Jv - iv, - JV - iv ; 1 - 2iv ; e-g) e’P”t}, 

where 
2(Ap- 1): 2f(2iv) 

(A 3% b)  f (  1 +A” + iv) f (  - Jv + iv) v =  I d ( v )  = 
CL 

Substituting (5.9b) (which is now exact) into (3.9b) and expanding the solution in the 
eigenfunctions (A 1) and (A 2), we obtain (cf. (3.13)) 

where 

wherein v, is given by (A 3a) with A replaced by K therein. 
The contribution of Qi, to S (4.3b) is given by (after invoking 2A[E2] = 1 

N = 0 for p < 4 2 ,  and the integral is exponentially small as p 4 0. The contributions 
of the dominant (n = 0) mode and the continuous spectrum (obtained by numerical 
evaluation of the integral) for p = 4 2 -  are -0.433 and 0.007, and it appears that 
the error in retaining only the dominant mode in the calculation of S,  is less than 
1.6% for p < 4 2 .  
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Appendix B. Asymptotic calculation for exponential profile 

expansion 

and the asymptotic expansion 

The asymptotic development of the results in $5 follows from the power-series 

(B 1)  A N -  A, = 1 - ~ y u + p + 0 ( ~ 3 )  

wherein E =  K / A .  Combining (5.13), (B 1) and (B 2) in the integral in (5.12), 
separating the integral into two parts, (a) and (b), where coth (xv,) is replaced by 1 
in (a) and by coth (xv,)- 1 in (b), and letting K = At in (a) and K = pa2 in (b), we obtain 

9 '(K) dK '{, K--h 

+p2( -$ + $9 -Et3 +it4)] dt 

- 2p JOm e-zrre cosech (2xs) (s- 3ps3) ds + O($) (B 3 4  

= ( l - ~ ~ + ~ ~ Z ) [ - e - 4 E i ( 4 ) ( 1 - ~ ~ - ~  2 -1 
a& 1 24P++P21 

- 2 ~ [ ~ + ~ i + o ( p 9 ) ,  (B 3b) 
where the integrals in (B 3a) have been evaluated from a table of Laplace transforms. 

Substituting (B 1)  and (B 2) with i? = 1 therein into (5 .10~)  and invoking (5.11), we 
obtain (5.14a, b). Substituting (B l),  (B 3b) and 

hzo = ) - $ + + 4 P 2 + ~ ( p )  (B 4) 
into (5.12), we obtain (5 .14~) .  We remark that if the ssymptotic (p 4 0) approximation 
to F(K)  had been used coth (xv,)  in ( 5 . 1 3 ~ )  would have been approximated by unity, 
in consequence of which the second integral in (B 3a) would have been neglecfed and 
the resulting approximation to 8 would have been in error at'O(p). 
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